Contact manifolds, contact instantons, and twistor geometry

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Einstein Manifolds and Contact Geometry

We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.

متن کامل

Institute for Mathematical Physics Einstein Manifolds and Contact Geometry Einstein Manifolds and Contact Geometry

We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.

متن کامل

Fano Manifolds, Contact Structures, and Quaternionic Geometry

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...

متن کامل

Symplectic, Poisson, and Contact Geometry on Scattering Manifolds

We introduce scattering-symplectic manifolds, manifolds with a type of minimally degenerate Poisson structure that is not too restrictive so as to have a large class of examples, yet restrictive enough for standard Poisson invariants to be computable. This paper will demonstrate the potential of the scattering symplectic setting. In particular, we construct scattering-symplectic spheres and sca...

متن کامل

Contact Geometry

2 Contact manifolds 4 2.1 Contact manifolds and their submanifolds . . . . . . . . . . . . . . 6 2.2 Gray stability and the Moser trick . . . . . . . . . . . . . . . . . . 13 2.3 Contact Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Darboux’s theorem and neighbourhood theorems . . . . . . . . . . 17 2.4.1 Darboux’s theorem . . . . . . . . . . . . . . . . . . . . . . . 17...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2012

ISSN: 1029-8479

DOI: 10.1007/jhep07(2012)074